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Abstract-Three-dimensional (3-D) mathematical formulation of the imaginary planes method (IPM) for 
the calculation of radiative transfer in rectangular furnaces is presented. In this method, radiative transfer 
is modelled in terms of chain interaction from zone to zone as opposed to direct interaction in the classical 
zone method. A number of tests are carried out for gray and real gases as well as different enclosure 
geometries. The results compare well with those of the zone method. Moreover. considerable reduction in 
computer time (reduction factor up to 24) has been obtained with respect to the zone method. This feature 
will allow the IPM to be more easily incorporated into an overall simulation involving the equations of 

motion, combustion kinetics and transfer of heat and mass. 

1. INTRODUCTION 

COMMERCIAL numerical codes (e.g. Phoenics. Fluent, 
Flotran, . . .) are becoming more and more popular 
among the industrial research divisions. These avail- 
able numerical tools are now used by researchers as 
the basis of large mathematical models which are 
made increasingly sophisticated in order to reflect the 
actual phenomena as closely as possible. However, 
the complexities of most industrial processes, together 
with long computation time requirement, still pre- 
clude a rigorous simulation of the phenomena 
involved. Affordable solutions are obtained only 
through simplified methods. 

This paper proposes a simplified method in radi- 
ation heat transfer which is the most important heat 
transfer mode in industrial furnaces. Radiative trans- 
fer has been extensively studied over the past three 
decades. The zone method [I] is known to be the 
most rigorous of all the 3-D numerical procedures. 
However, its implementation as part of an overall 
complex transient model is prohibitive owing to its 
considerable requirements in computation time. 
Nevertheless, it is worth mentioning that the accuracy 
of this technique has led recently some researchers to 
use it in conjunction with the solution of the Navier- 
Stokes equations for steady state cases [2, 31. The 
Monte Carlo method also gives an ‘exact’ solution, 
but its computation requirements are even higher than 
those of the zone method. and nowadays it is prac- 
tically confined to a role of reference to which approxi- 
mate methods are compared to test their validity. 
Another exact 3-D method is reported by Selcuk [4]. 
Her proposed method yields a rigorous solution for a 
box-shaped furnace enclosing a gray gas of uniform 
absorption coefficient subjected to non-uniform radia- 

tive energy source distribution. The results are 
intended to serve as standards for testing the accuracy 
of the predictions of approximate radiation models in 
isolation from the models of Row and combustion. 
The study is however restricted to black wall enclos- 
ures which limits the applicability of the method. The 
so-called flux methods (see for example ref. [j]). based 
on an assigned intensity variation over discrete sub- 
divisions of the 47~ sr solid angle, lead to a set of 
differential equations that integrate well with other 
finite-difference schemes such as those used in solving 
the Navier-Stokes equations. However. these 
methods are often over-simplified, especially for cases 
where the gases are clear and when the heat sink 
temperatures are low [2]. Lockwood and Shah [6] 
developed the discrete transfer method which is a 
combination of Monte Carlo, flux and zone methods. 
Some applications of this method to industrial pro- 
cesses have been reported in the literature [7, 81. 
Recently the method has been adapted to the wide 
band model for representing non-gray effects [9]. It 
requires an iterative procedure unless the walls are 
black. It assumes heat fluxes at the walls, solves the 
basic transfer equation for radiation beams emitted in 
predetermined directions and updates the heat fluxes 
until the convergence is obtained. The iterative nature 
of this method may result in large computation times 
for certain applications. Fiveland [lo] has adapted the 
discrete ordinate method (used extensively for solving 
the neutron transport equation) to the 3-D absorption 
and scattering of thermal radiative energy. The 
reported results compare well with those obtained by 
the zone method for an extinction coefficient of 1.0 
m - ‘. However, since the basic principle of the method 
is similar to that of the flux methods (solving the 
radiative transfer equation for a set of discrete direc- 
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NOMENCLATURE 

A surfdce area [m ‘1 (I heat flux at an imaginary or real surface; 
(1,. u:, weighting factor for the nth gray gas (I~, for incident flux on surface k, qI,, 

when radiation is emitted from a volume 
or a surface zone, respectively 

for leaving flux, clx for net flux [W m ._ ‘1 
T 

&j term containing the reception factors 
temperature [K] 

U overall heat transfer coefficient 
(equation (6)) 

BM matrix formed from equations (7)-(9) 
[W m-’ K-l]. 

C, heat capacity at constant pressure Greek symbols 
[J kg-’ K-‘1 & emissivity 

CM vector formed from the right-hand side d Stefan-Boltzmann constant. 
of equations (7)-(9) 5.67x IO-* W m-‘K-‘. 

0, term containing the emissive powers and 
the net heat flows (equation (6)) Subscripts 

f;“l 

black emissive power, aT4 [W m-*1 a ambient 
reception factor between surface j and g gas 
surface k i incident 

ss, direct interchange area between a volume I’ (orj, k) identification of a zone (volume 
zone and an enclosing surface k or surface) 

h convective heat transfer coefficient t1 rlth gray gas 
[W m-‘K-‘1 0 leaving 

I, J, K identification of the subdiv.isions r reference 
along the .Y. _Y and I coordinates, I ’ . _. . . . .6 identification of the surfaces 
respectively enclosing a volume zone (see Fig. 1). 

K gray gas absorption coefficient [m- ‘1 
L total number of volume zoi;es ;long the Superscripts 

s-axis C central volume zone 
IM total number of volume zones along the E east 

y-axis H high 
ti mass flow rate [kg s- ‘1 i neighbouring volume zone 
N total number of gray gases. or total L low 

number of volume zones along the Z- N north 
axis n 11th gray gas 

Q net heat crossing an imaginary plane; S south 
subscripts I, 4’ and I for corresponding SW south-west (other combinations of H, L, 
coordinates [Wj E, W, N. S also possible) 

QC heat generated by combustion p] W west. 

tions within the 4n solid angle). it is not clear if the 
results would still be as reliable at lower extinction 
coefficients. The imaginary planes method [I l-131 is 
essentially a simplified zone method. No assumption 
is made concerning the variation of intensity over the 
solid angle. The exchange between a given gas zone 
and its immediate boundaries is calculated as in the 
zone method, however direct interaction with sur- 
rounding gas zones is prohibited. The method was 
originally developed for one-dimensional systems [I l] 
and then extended to two-dimensional cases [13]. It 
combines good accuracy and considerabty reduced 
computation time compared to the zone method. 
Since it requires an integral analysis for the calculation 
of radiation as opposed to the differential formulation 
used in the flux methods, the IPM is not directly 
compatible with the solution of the equations of 
motion and transfer of heat and mass. Nevertheless, 

due to its low computation time. it has been used 
successfully for the modeling of a melter-holder fur- 
nace [ 141 by adopting separate grids for solving radi- 
ation and motion/combustion with a proper interface. 
Although the use of IPM implies added difficulties for 
its incorporation into the general solution framework, 
the benefits obtained in terms of accuracy and appli- 
cability to different types of furnaces outweigh such 
problems. This paper briefly describes the general for- 
mulation of the 3-D method in rectangular coor- 
dinates and presents a number of assessments for typi- 
cal industrial furnaces. 

2. FUNDAMENTALS OF THE IMAGINARY 

PLANES METHOD (IPM) 

The IPM uses the same subdivision principle as that 
of the zone method, however the interaction between 
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REAL SURFACES : 2,3,5 

1~~~~~ SURFACES (RAt4ES) : f&,6 

FIG. 1. Identification of the boundaries (by numbers) and 
of the immediate neighbours (by letters) of a given volume 

zone C. 

zones is more restricted. Two types of surfaces arc 
considered : surfaces on the enclosure walls referred 
to as real surfaces (not in the sense of radiatively 
selective surfaces) and ima~na~ pfanes separating 
the adjacent voiume zones, Figure I depicts these sur- 
faces and explains the identification of the boundaries 
(by numbers) and of the immediate neighbours (by 
letters) of a given volume zone C. According to the 
IPM, each volume zone has a direct view only of its 
own boundaries. However, the adjacent volume zones 
are linked through radiative heat fluxes crossing the 
imaginary planes, providing an indirect interaction 
between all the zones as opposed to the direct inter- 
action in the zone method. Figure 2 describes the 
linking procedure between the zones through the 
imaginary planes in three directions. The subscripts i 
and o stand for ‘incident’ and ‘leaving’, respectively, 
Q is the net heat ffow rate, and it will be defined by 
equation (3). The tinking principle between adjacent 
volume zones is that the incident flux on an imaginary 
plane coming from a given volume is equal to the 
leaving flux from the same plane directed towards the 
adjacent volume (that is the flux is continuous through 
the imaginary plane, e.g. & = $)_ The IPM allows 
the radiative transfer in each volume zone to be ex- 
pressed in terms of heat fluxes or temperatures of its 
six faces, which offers the considerable advantage that 
the interchange areas can now be calculated zone by 
zone inde~ndently. The linking procedure then takes 
care of the interdependence between zones in the 
enclosure. An abridged mathematical formulation is 
given below. Emphasis is put on the extension of the 
method to 3-D systems. Detailed derivations of the 
equations may be found in the previously pub~~sh~ 
work on this topic [it, 13, 17. 

Irradiation q: of surface k of a given volume zone 

Fw. 2. The coupling principfe of the IPM. 

C is due to radiative heat received from gas C and 
from the six faces (real and imaginary) by which zone 
C is bounded 

(1) 

where & is the reception factor ~tw~n surface j and 
surface k according to the terminology first introduced 
by Hottel and Cohen [I], and $k is the direct inter- 
change area between the gas and surface k. If the 
surface is real, the above equation combined with a 
heat baaiance leads to 

j= I 

On the other hand, a heat balance performed on an 
imaginary surface (plane) gives the general equation 
(see Fig. 2) 

CT2 = (q~*-q~)A~ (3 

where, by convention, the net heat flow rate Qf is 
taken as positive in the inward direction within zone 
C and opposite to the coordinate directions. Replac- 
ing the incident fluxes qg in equation (3) with the 
leaving fluxes in the adjacent volume zones based on 
the linking procedure and rearranging kads to the 
following relations : 
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Incorporation of equation (1) in equation (3) yields 

Equations (2) and (5) apply for real surfaces and 
imaginary planes, respectively. and their similarity can 
be exploited to produce a single relation valid for both 
cases [ 131 

where gj is expressed in terms of the reception factors 
between surfaces, while Ds contains the emissive pow- 
ers of the gas and surface zones as well as the net heat 
Rows at the imaginary planes. Introducing equation 
(6) in equation (4) and rearranging terms results in 
the following three equations : 

for the .r-coordinate 

for the y-coordinate 

(9) 

The above expressions are written in a general form 
to facilitate the computer programming. For the case 
of volume zone C illustrated in Fig. 1. the following 
terms are set equal to zero : Qy, Qz, Qsw, Q:“_ Q-y”, 

!$“;Q_~, F:‘, Q:, 6, 6 E:, E?,& E:, 6% ~7, ES, 8% 

Q, E,, cZ, cd, E\. These equations are applied to each 
corresponding imaginary plane generated by the grid 
used for the furnace. Let L, M and N be the number 
of votume zones (divisions) in directions I, _r and 
* respectively. Then, the total number of imaginary 
ilanes (equal to the total number of unknown Q’s in 
the corresponding equations) is equal to : (L- I)NN 
+(M- I)LN+(N- I)LM. A sparse banded matrix 
system of the same dimension is thus obtained. and 
it can be condensed to 

[BM](Q) = {CM) (10) 

where matrix [B&f] contains the interchange areas 
and vector {CM) contains the emissive powers of the 
gas and real surface zones. This linear equation system 
is best solved by a L\U technique. Furthermore, if 
some (or all) of the volume and surface temperatures 
are unknown (as it is usually the case), then heat 
balances have to be written for each zone of unknown 
temperature. 

For a gas zone 

+(a:-Q$‘)+tQ:--Q.?)+(Q:-Q:) = 0 (11) 

where QF is the heat released due to combustion in 
zone C, hC the heat transfer coefficient between the 
surface zone (with temperature c) and the adjacent 
volume zone (with temperature c), riz’ is the mass 
flow rate entering volume C from surrounding volume 
zones (with heat capacity CL and temperature Ti). 

For a real surface zone 

A~cl~+h=A~(~-~)fUA:(~--_T,) =o (12) 

where U is the overall heat transfer coefficient between 
inner wall temperature c and ambient temperature 

To. for the :-coordinate 



It is seen from the above expressions that allowance 
is made for combustion, convection and arbitrary flow 

pattern (the latter through the term 

of equation (11)). The distribution of the combustion 
and flow patterns can be either prescribed or cal- 
culated by solving the combustion kinetics and Nav- 
ier-Stokes equations. Since the purpose of this work 
is to assess the IPM, these will be prescribed here. 
The solution of the problem is then obtained by an 
iterative procedure as follows: (1) an initial tem- 
perature field is assumed ; (2) the Q’s are computed 
by equation (10) ; (3) the q%‘s are found by equation 
(6); (4) the net fluxes at the walls are obtained by 
qc = (g -q~“)&/(l -Q) ; (5) the new temperature 
distribution is obtained by solving the non-linear 
equations (11) and (12) using the Newton-Raphson 
technique; (6) these temperatures are compared with 
the previous ones, and if the difference is less than a 
given tolerance, the solution has converged; if not, 
the procedure is repeated starting from step 2 until 
the convergence is obtained. 

temperature. The second difficulty is apparent from 
the examination ofequation (13). It is seen that &(Tj, 
7”J is to be evaluated on the basis of the tem~~tures 
of the six faces enclosing a given volume zone. These 
faces can be imaginary planes for which T; is imma- 
terial since radiation passing through them is of many 
different sources (gas and surface). There is no clear 
sohnion to this problem. Different suggestions have 
been made, among which : taking q equal to the geo- 
metric mean value of the gas temperatures on both 
sides of the plane [13], or using the closest solid tem- 
perature [17]. However, the authors feel that the full 
assessment of this point has not yet been made and, 
therefore, no general rule can be drawn for the 
moment. Thus, even though results from the IPM 
were found to compare well with those obtained from 
the zone method for real gases, at this stage the util- 
ization of IPM offers a safer basis for the case of a 
gray medium. 

2.1. Extension to real gases 
To adapt the formulation to a real gas medium, 

Hottel’s well-known weighted sum of gray gases for- 
mulation is used [ 151. The chosen technique is similar 
to that used in the zone method, except that the 
weighting coefficients are assigned to the direct inter- 
change areas rather than the total interchange areas. 
For example, in the presence of a real gas, equation 
(1) is rewritten as 

where ai and n, are the weighting coefficients for the 
abso~ti~ty and the emissivity of the gas. The rest 
of the mathematical formulation is modified accord- 
ingly. However, two difficulties arise. First, the B 
values in equation (6) are now dependent on tem- 
perature and so is, as a consequence, the matrix [BM) 
in equation (10). Therefore, in calculating the iacob- 
ian for the solution of equations (11) and (12), the 
partial derivative of Q with respect to a given tem- 
perature T, is expressed as 

N-l 
S - ‘, corresponding to typical values in the industrial 

+ 1 a,(~‘)GY~ (13) operation. The gas medium is considered as gray with 
n- I an absorption coefficient of 0.175 m- ‘. Such a gas is 

relatively transparent and is therefore a good medium 
for testing the validity of a simplified method such as 
the IPM. In principle, the IPM shouId give better 
resuits in dark gases since the formufation is based on 
partial interaction between zones. The chosen grid is 
6 x 3 x 4 (x, I’, I), but this can be changed at will since 
the interchange areas are calculated by a Monte Carlo 
method which allows high Sexibiiity in the sizing of 
the grid. The results of the simulation are presented 
in Fig. 4 for the heat transferred to the liquid metal 
at J = 1 and 2 (part (a)), the temperature of the roof 
at the same location (part (b)) and the gas temperature 
averaged over the height of the furnace at J = 2 (part 
(cl). The IPM is compared with the zone method 
which is taken as the rigorous solution. It is seen 
that the results are in good agreement. The average 
computational errors are 4.4, 3.4 and 0.5% for parts 
(a), (b) and (cf, respectively. The computation times 
on a VAX-785 were 1099 and 74 s for the zone method 

which makes the solution more difficult especially 
for 3-D cases. Owing to the relatively moderate vari- 
ation of the weighting factors a and (I’ with respect to 
tem~rature, the recommended procedure is to neglect 
the last partial differential in equation (14) and to 
re-evaluate fBM1 at each iteration with the undated r~ ~~ and the IPM respectively, giving a time ratio of 14.9. 

Application of the imaginary planes method to three-dimensional systems 2675 

3. RESULTS 

To assess the IPM method, a series of tests were 
performed on different types of furnaces. 

3.1. Test I 
The first geometry chosen is the one illustrated in 

Fig. 1 which corresponds to a typical elongated com- 
bustion chamber of an aluminium melter/holder. This 
case is fully described in Table 1 and Fig. 3. The liquid 
metal that constitutes the bottom of the furnace is 
held constant at 1033 K and all the other surface and 
gas temperatures are unknown. The total heat release 
by combustion (natural gas) and the mass flow rate 
at the burner are respectively 4213 kW and 1.754 kg 
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Table I. Data used in test I for the elongated furnace 

Model inputs 
Remarks and 

numerical values 

PRESCRIBED PATTERNS : 
Combustion 
Flow field 

PHYSICAL PARAMETERS: 
Gas absorption coefficient K 
Direct interchange areas 
Refractory emissivity 
Charge (bottom) emissivity 
Nature of gas 
Size of the furnace (x, _v’. -_) 
Number of subdivisions (x, J, c) 
Overall heat transfer coefficient 
(from inside surface to environment) 
-charging side 
-side opposite to the charging doors 
-roof 
-burner face and opposite face 
Convective heat transfer coefficient 
-burner face and opposite face 
-other faces 
Composition of combustion gas 
(volume basis) 
Ambient temperature 
Temperature at burner inlet 
Charge temperature 

see Fig. 3(a) 
see Fig. 3(b) 

0.175 m-’ 
calculated by Monte Carlo 

0.7 
0.6 

gray 
10.75 x 3.75 x I.2 m 

6x3x4 

1.3 W m-’ K-’ 
0.86 W m-’ K-’ 
1.37 W rn-? K-’ 
0.75 W m-’ K-’ 

SO W m-’ K- ’ 
25 W m-‘ K-’ 

CO2 8.9. Hz0 17.7, 
O2 1.3, NJ 72.1% 

298 K 
333 K 

1033 K 

Y Y 
(a) W 

FIG. 3. (a) Prescribed combustion distribution for Test I (kW); (b) prescribed flow field (kg s-l). The 
indicated values are relative to each subdivision along the :-axis (four subdivisions in this case) ; they must 

thus be multiplied by 4 to obtain the total values for the furnace. 

3.2. Test 2 
The same example has been worked out based on 

the real gas behaviour for which the molar ratio 
H,O/COr was taken equal to 2, characteristic of the 
combustion products of natural gas (the full com- 
position is given in Table 1). Results are shown in Fig. 
5 for the parallelepiped gas portion J = K = 2. As 
explained previously, the solution is dependent on 

the immaterial temperatures of the imaginary planes. 
Three cases have been tested here. In case I, all the 
imaginary planes were assigned the temperature of the 
liquid metal (1033 K); in cases 2 and 3, they were 
assigned, respectively, the average temperature of all 
the refractories enclosing the furnace and the average 
temperature of the real surface zones parallel and 
opposed on both sides to each imaginary plane. The 
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temperature dependent weighting coefficients intro- 
duced in equation (13) were calculated according to 
the procedure suggested by Smith er uf. [IS]. Four 

[ZG-q gray gases were considered, one being the clear gas 
with K = 0 m- ‘, It is apparent from Fig. 5 that the 

l J:l best results are obtained for the first case, i.e. when the 
. Jr2 

-lPM 
bottom surface temperature is used as the imaginary 

__**.. 
w __-_ ZONE 

plane temperature in the calculations (average pet- 
- METIC centage error : 1%). This surface has the lowest tem- 

perature of all the surfaces of the enclosure and is by 
far the most absorbing. Unfortunately. at this stage, 
it cannot be stated positively that the most absorbing 
surface should be used in ail other systems. Never- 
theless. it can be pointed out that case I gives better 
results than when the imaginary planes are assigned 
mean temperatures of the gas zones on both sides of 
the planes as reported in ref. [13]. For this case, the 
computation times were 4744 and 413 s for the zone 
method and the PM, respectively (ratio = I 1.5). 

3.3. Test 3 

Jz2 

To further test the method, the cross section of the 
furnace was changed to a square of 5 m x 5 m (still 
10.75 m long), and the energy released by combustion 
and the total flow rate were doubled without changing 
however the relative distribution of these quantities. 

123456 
PoslTlCN I AUNG THE X AXIS 

FIG. 4. Results for Test I (elongated furnace, gray gas with 
K=O.l75m-‘f:(a)heattotheliquidmetalatJ= land2; 
(b) roof temperature at the same locations: (c) gas tem- 
perature averaged over the height of the furnace at f = 2 

Wf means that the two methods give similar results). 

J 
J-2, Ks2 

- IPM(easel) 
------- I PM kase2) 
---- IPMbzas.?3) 
-.- ZOM METlfm 

1 2 3 4 5 6 

FOSiTlON I ALONG THE X AXIS 

FIG. 3. Results for Test 2 (elongated furnace, real gas). 
The arrows indicate the locations of the calculated values. 
Continuous lines between these points have no physical 
meaning, however they are used here in place of the bar 

diagram (see Fig. 4) to avoid overloading the figure. 

s_-_- -- Js2 

1300 (b) 

1000 

/ - 

J-2 
900 ---- 

123456 

FIG. 6. Results for Test 3 (5 x 5 x 10.75 m furnace. gray gas 
with K = 0.175 m-l). Parts (a) and (b) are for J = Z and 

part (c) for J = K = 2. 
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E - 0.8 

FIG. 7. Description of the enclosure used in Test 4. 

The gas was taken as gray. The rest of the charac- 
teristics remained unchanged. This modified furnace 
is a more severe test for the IPM. The furnace is no 
longer of the elongated type, and the radiative transfer 
is important in every direction (in the previous case, 
the axial heat fluxes were small compared to the trans- 
versal ones). The results are given in Fig. 6 for the 
same variables as in Fig. 4. Note however that the gas 
temperatures are reported for J = K = 2 instead of 
values averaged over the height. It is seen that the 
discrepancies between the two methods are of the 
same order as the previous ones: the average errors 
are 4, 6.1 and 3.5% on the heat to the liquid metal, 
the roof temperature and the gas temperature, respec- 
tively. The computation time ratio between the two 
methods was the same as in Test I. 

3.4. Test 4 
The purpose of this last test is to evaluate the influ- 

ence of the gas absorption coefficient K. The assess- 
ment is made for a case of pure radiation, all tem- 
peratures of the volume and surface zones being 
prescribed, which means that the solution of the non- 
linear set of equations of the type (11) and (12) is 
bypassed. Hence, the emphasis is put here on the basic 
principle of the IPM. Since the interaction between 
zones is established indirectly, it is logical to question 
the validity of the method at very low absorption 
coefficients, in which case the exchange between dis- 
tant zones also become important. The enclosure 
chosen is described in Fig. 7. It is a 1.5 x 1.5 x 3 m (x, 

y, z) box-shaped furnace with gas, lateral wall and 
end wall temperatures at 1200,300 and 400°C respec- 
tively. The emissivity of all the surfaces is 0.8. The 
chosen grid is IO x 5 x 5 and computation is done for 
K = 0.15 and 0.05 m- ‘. Because of the symmetry. 
results may be reported only for the planes marked 
with an asterisk. By comparing parts (a) and (b) of 
Fig. 8, it can be seen that the discrepancies between 
the IPM and the zone method do not increase with 
decreasing gas absorption coefficient K (identical 
average error of 8.7% for both K = 0.15 and 0.05). 
The only significant discrepancies (-25%) are loca- 
lized at the corners of the Y-Z plane. For K = 0.05. 
the computation time with the IPM was 267 s 
compared to 3170 s with the zone method (time 
ratio = 11.9). 

4. COMPUTATION TIME 

A comparison of the computation time for both 
methods is given above. It is worthwhile however to 
examine more closely its apportionment. In both the 
IPM and the zone method two different computation 
times can be identified. The first one is the time for 
the calculation of the direct interchange areas (dIA) 
by the Monte Carlo method. For the IPM, the number 
of dIA’s to be evaluated is 42Nn, where ND is the 
number of finite volume zones of distinct size and gas 
absorption coefficient. ND is equal to 1 for a case of 
uniform grid and uniform gas absorption coefficient. 
In the zone method, the number of dIA’s is equal to 
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(a) K = 0.15 I 

(b) K ~0.05 

FIG. 8. Comparison of the IPM and the zone method (Test 4) with K = 0.15 m- ’ (part (a)) and 
K = 0.05 m- ’ (part (b)). Results are reported for the net heat fluxes in kW m-*. Values in parentheses are 

for the IPM. 

42N’ where N is the total number of finite volumes in 
the domain regardless of the sizes of the volume zones 
and the gas absorption coefficient distribution. Hence, 
it can be inferred that the IPM reduces computation 
time considerably, especially for the case of uniform 
grid/uniform gas absorption coefficient. It must be 
pointed out however that this comparison is not 
perfect, since the zone method goes one step further 
by evaluating the total interchange areas which adds 
to the computation time (it increases considerably if 
the emissivities of the real surfaces are low). The 
second time is related to the calculation of radiative 
heat fluxes and to the procedure for the convergence 
of heat balances on the surface and volume zones, 

the combination of which will be referred to as the 
iteration time. Since both methods use the Newton- 
Raphson algorithm for solving the heat balances, 
there is no significant difference in computation time 
in this regard. However, due to limited interaction of 
the IPM with the neighbouring zones, time used for 
obtaining the radiative heat fluxes is much less with 
this method. 

Figure 9 shows how the time ratio (defined as the 
ratio of the time required with the zone method to 
that with the IPM) varies with respect to the number 
of finite volumes on a VAX-785 for the case of a gray 
gas where all the zone temperatures are unknown. It 
can be seen from the figure that iteration time is the 
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NUMBER OF FINITE VOLUMES 

FIG. 9. Effect of the grid size on the time ratio 

limiting factor since the total time ratio would be 
continuously increasing if it were dependent solely 
on the interchange area calculation. This limiting 
phenomenon can be explained as follows. The IPM 
uses two levels of matrix calculations to solve for 
radiative fluxes whereas the zone method uses only 
one. For a fine grid, the matrices are large and, since 
the computation time varies approximately with the 
third power of the matrix order, the time saving is 
somewhat reduced. For commonly used grid sizes 
(70-90 finite volumes), the total time ratio is about 
14, and it can go up to 24 if 40 volume zones are used. 

5. CONCLUSION 

The 3-D mathematical formulation of the imagin- 
ary planes method in rectangular coordinates has been 
presented. Assessment has been done for a number of 
cases which demonstrate accuracy of the IPM. Cases 
treated include elongated and short furnaces, different 
absorption coefficients, gray and real gases. The inter- 
esting feature of the method lies in the fact that each 
volume zone, while being linked to the adjacent vol- 
ume zones by the net radiative heat fluxes, is still 
radiatively autonomous from the point of view of the 
interchange area calculation. The imaginary planes 
preclude a direct radiative exchange with the other 
zones in the enclosure. This characteristic leads to 
appreciable savings in computation time. Absolute 
time saving capability becomes very important when 
transient processes are being studied. Furthermore, 
some cases which are very difficult to handle by some 
other methods are solved easily by the IPM such as 
the geometrical irregularities in the enclosure. It 
should also be noted that, even if the flow patterns 
used in the current assessment were simple, more com- 
plex patterns can easily be handled [l3]. The IPM is 
presently being incorporated into a general model of 
an aluminium casting furnace. 
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LA METHODE DES PLANS IMAGINAIRES APPLIQUEE A DES SYSTEMES 
TRIDlMENSlONNELS 

R&sum&-On prisente la formulation mathematique de la methode des plans imaginaires pour le calcul du 
transfert de chaleur radiatif dans des fournaises rectangulaires en trois dimensions. Cette mPthode simplifie 
le rayonnement en le reprisentant sous la forme d’une interaction en chaine d’une zone B I’autre con- 
trairement B une interaction directe de toutes les zones telle que pr&onis& par la mithode classique de 
zones. On a r&ah& certains tests pour la validation de la mPthode en faisant appel B des gaz gris et &Is 
ainsi qu’8 diffkrentes gtometries. Les rCsultats obtenus supportent bien la comparaison avec ceux de la 
methode de zones. De plus, les temps de calcul se sent rivilis considirablement reduits par rapport ;i ceux 
de la mkthode de zones (facteur de riduction atteignant 24). Cette derniere caractiristique permettra $ la 
methode des plans imaginaires d’etre plus facilement incorpor& dans une simulation globale impliquant 
Cgalement les iquations du mouvement. de la cinitique de combustion et du transfert de masse et de 

chaleur. 

ANWENDUNG DER METHODE DER IMAGINAREN EBENEN AUF 
DREIDIMENSIONALE SYSTEME 

Zusammenfassung-Es wird eine dreidimensionale mathematische Formulierung der Methode der imag- 
inlren Ebenen (IPM) zur Berechnung des Strahlungsaustausches in rechteckigen dfen vorgestellt. Bei 
dieser Methode wild der Strahlungswlrmeaustausch als Kettenreaktion von Zone zu Zone modelliert. 
wohingegen beim klassischen Zonenverfahren eine direkte Wechselwirkung angenommen wird. Es wird 
eine Reihe von Versuchen mit grauen und realen Gasen sowie fiir unterschiedliche Hohiraumgeometrien 
durchgefiihrt. Die Ergebnisse stimmen gut mit denen des Zonenverfahrens i&rein. Das neue Verfahren 
erlaubt eine betrichtliche Verringerung der Rechenzeit (bis zum Faktor 24) im Vergleich zum Zonen- 
verfahren. Dies wird dem IPM-Verfahren leichten Eingang in Gesamtsimulationen verschaffen, hei denen 
die Bewegungsgleichungen, die Verbrennungskinetik und der Wgrme- und Stofftransport zu beriick- 

sichtigen sind. 

ITPWMEHEHHE METOW MHHMbIX I-IJIOCKOCrER K TPEXMEPHbIM CHCTEMAM 

Am3~ums-IIpsieo~~~~cn TpcxMepHan MaTeMaTHgemax @opMyAHposra M~TOA~ ~mibfbm nnocrocre~ 
(lPM)ana pa@mapawarmomoro nepenoca B npos~oyro~b~bm~on~~. Bna~lto~~erone pauaa- 
unomihal uepetioc MOAU~~PY~T~~K uentsn4 B3aSiMOAe&TB~CM OT 30mu x 30se B o-rnnwe OT npnhtoro 
B3aEbfOAefiCTBHII B KJlaCCHPeCKOM U)HBAbHOM MeTOAe. BbmonneH p3UX 3KCIlepHMeHTOB AJIx cepor0 A 
peaAbHor ra3o~,aTa~~egnnpa3~1~mbm reoMeTpd nonocm.~oJrynck~o xopomeecorAacHecpe3yd?a- 
TaTaMR 30HaRbHOrO MeTOAa. &me TOTO, 3Ha'IHTeAbiiO (B 24 pt.@ CoxpauteHo MB-oe 62PeMX UO 
cpaBHeHHI0 c 301iaAb~bc~ MCroAoM.~O ~IO~BOAET 6oAee nelllo HcnOAb30BaTb MC7011 IPM B o6rUC.Cr 
MOAeJUipoBaHSiH, BxJllO'SaKNAeM~aBHeHHn AB=ewx, KHHCTEKH cropaexn,aTanteTeMO- H bmccone- 

peeoca. 


